

Shedding new light on the first billion years of the Universe

Unveiling the properties of the first QSOs and their host galaxies

Roberta Tripodi PhD student at University of Trieste Visitor at Kavli Institute for Cosmology (Cambridge)

Collaborators: F. Fiore, C. Feruglio, R. Maiolino, L. Zappacosta, E. Piconcelli, F. Lelli, J. Scholtz, T. Costa, M.Bischetti, F. Civano, S. Gallerani, F. Di Mascia, V. D'Odorico, F. Kemper et al.

5th July 2023, Marseille

High-z QSOs

- Active galaxies with massive BHs
- What are the properties of QSOs host galaxies?
 - Dust
 - Gas
 - Stars
- Are these different from low-z ones?
- What can these tell us about the evolution of galaxies over time?

Unveiling the properties of the first QSOs and their host galaxies

Fundamental questions

How these SMBHs are able to in short timescales?

 Do the SMBHs and their hostgalaxies co-evolve?

 How effective is the feedback in influencing the evolution of these objects?

05-07-2023, Marseille (France)

HYPerluminous QSOs at the Epoch of ReionizatION (HYPERION)

- HYPERION sample comprises 18 QSOs which experienced the most rapid SMBH mass growth
- Deep X-ray survey: first systematic, homogeneous X-ray spectral characterization of the accretion processes onto these extreme QSOs
- They are expected to witness the phase of strong feedback and to show powerful outflows

Objectives:

- ✓ Investigate the properties of their host galaxies
- V Draw a picture of the whole population

Unveiling the properties of the first QSOs and their host galaxies

Zappacosta+23, arXiv:2305.02347

How:

✓ ALMA-NOEMA observations of the dust and cold gas ✓ Focus on high resolution, high sensitivity, high frequency

05-07-2023, Marseille (France)

Dust properties of high-z QSOs

Unveiling the properties of the first QSOs and their host galaxies

Previously only rough estimates of T_{dust} (Wang+19)

 The power of ALMA band 9: high accuracy for dust properties

 $T_{\text{dust}} = 48 \pm 2 \text{ K} \ \beta = 2.6 \pm 0.23$ $\frac{M_{\text{dust}}}{10^7 \text{ M}_{\odot}} = 2.3 \pm 0.8$

 $SFR \sim 265 \pm 32 M_{\odot} yr^{-1}$

Bennett+23 suggest a growth path for J0100+2802

05-07-2023, Marseille (France)

05-07-2023, Marseille (France)

Cold gas in high-z QSOs

- All HYPERION QSOs observed in [CII] (Novak+19, Neeleman+21, Venemans+20) 0
- Gas masses of order 5 Hyperions in Neeleman+21
- Kinematic analysis suggests rotating disks
- CO(6-5),(7-6) for JO36+O3 in Decarli+22
- New detections of CO(6-5), (7-6) in J1007+2115 at z~7.5 (Feruglio, Maio, RT+23, ApJL)

Unveiling the properties of the first QSOs and their host galaxies

- $\sim 10^{10} \mathrm{M}_{\odot}$
- Multi phase gas

05-07-2023, Marseille (France)

Cold gas in J0100+2802

Unveiling the properties of the first QSOs and their host galaxies

05-07-2023, Marseille (France)

Cold gas in J0100+2802

- Radio jet perpendicular to the merging (Sbarrato+21)
- Outflow with velocities up to 1000 km/s

- Outflow rate and energetics comparable to other
- Low momentum load (in agreement with Valentini+21)

arXiv:2306.01644

R. Tripodi

05-07-2023, Marseille (France)

Cold gas in J2310+1855

Spatially and spectral resolving *power (0.1" resolution) Best estimate o * \Rightarrow size [CII] ~ 2.6 × 1.9 kpc² dynamical mod $\Rightarrow M_{\rm dyn} = 5.2^{+2.3}_{-0.6} \times 10^{10} \,\mathrm{M_{\odot}}$ * Rotating disk (velocity gradient) (Feruglio+18, Wang+13)

Unveiling the properties of the first QSOs and their host galaxies

* Detection of outflow emissions

$$\Rightarrow M_{\rm out} = 5 \% M_{\rm disk}$$

 $\Rightarrow \dot{M}_{out} = 180 - 450 \text{ M}_{\odot} \text{yr}^{-1}$

In agreement with OH+ and OH outflows from Shao+22, Butler+23

Cold gas in J2310+1855

400

350

(km/s) 300

200

100

50

log(Y_{bu} o, o,

Dynamical modeling of the rotation curve

3/4 components:

✦ Gas disk

Stellar disk

✦ Black Hole

✦ Bulge

BH only is not enough Bulge with $M_{\rm bulge} \sim 10^{10} {
m M}_{\odot}$ \bigcirc

Highest-z Bulge candidate!

Unveiling the properties of the first QSOs and their host galaxies

0, 00 02

 $\log(Y_{\text{bulge}})$

 $\log(Y_{*\,\mathrm{disc}})$

Comparison with GAEA \bigcirc galaxies (Fontanot+2020) Which is the mechanism of bulge formation for J2310?

R. Tripodi

11

Evolution of SMBHs and their host galaxies

Galaxy growth

Unveiling the properties of the first QSOs and their host galaxies

Black hole growth VS

From NIR emission lines (MgII, CIV, Hβ)

D'Odorico+23

MBH

MBH

Lbol

05-07-2023, Marseille (France)

Evolution of SMBHs and their host galaxies

- BH dominance for J0100+2802
- Galaxy dominance for J2310+1855, VDJ0224-4711
- Symbiotic growth for PJ036+03

05-07-2023, Marseille (France)

R. Tripodi

13

Evolution of SMBHs and their host galaxies

- Instantaneous \bigcirc information (arrow)
- Predictive power?
- Different diagnostic?
- Goal: investigate \bigcirc the evolution of the whole population

Zoom-in simulations with AREPO (Costa+14,Costa+15) Red stars: J2310+1855, J0100+2802, PSOJ036+03, VDESJ0224-4711

05-07-2023, Marseille (France)

Conclusions

- Amazing science with ALMA: understanding the properties of the first QSOs
- Large reservoirs of gas, extended and massive dust component
- Detailed analysis down to sub-kpc scales
- SFR with very high precision (up to ~25% uncertainty) using B8-B9
- Cold gas reveals signatures of mergers and outflows
- Study the evolutionary scenarios of SMBH and host galaxies

Unveiling the properties of the first QSOs and their host galaxies

Resolved rotation curves allows precise kinematical and dynamical modelling

05-07-2023, Marseille (France)

Outflow kinetic power $\dot{E}_{out} = (1.1 - 2.7) \times 10^{43} \ erg/s$

✦ Radio jet perpendicular to the plane of merging (Sbarrato+21)

✦ Jet power

 $P_{jet} = 9 \times 10^{45} - 3 \times 10^{47} erg/s$

✦ Jet driving possible

Unveiling the properties of the first QSOs and their host galaxies

Cold gas in J0100+2802

