

Infrared tracers to study the chemical evolution of galaxies

Juan A. Fernández Ontiveros (CEFCA) E. Pérez-Montero, B. Pérez-Díaz, J.M. Vílchez (IAA) R. Amorín (U. La Serena) L. Spinoglio (INAF-IAPS)

Shedding new light on the first billion years of the Universe Marseille, 7th July 2023

Introduction

Heavy elements (0.02% baryons), main role from galaxies to planets

ISM witness of **chemical enrichment** gas and dust content + composition

Origins white book

Mass-metallicity relation

Metals & dust production linked to

Z(M_{*}, SFR,...) Models

Z depends on gas accretion and feedback

Tension with numerical simulations

Mass-metallicity relation

Sanders+21

Metals & dust production **linked** to

Z depends on gas accretion and feedback

Tension with numerical simulations

Dust at high redshift

Santini+10, Rowlands+14

Low optical metallicities in dusty submm. galaxies

No Redshift Evolution in the Broad-line-region Metallicity up to z = 7.54: Deep Near-infrared Spectroscopy of ULAS J1342+0928

Masafusa Onoue¹, Eduardo Bañados¹, Chiara Mazzucchelli², Bram P. Venemans¹, Jan-Torge Schindler¹, Fabian Walter¹, Joseph F. Hennawi³, Irham Taufik Andika¹, Frederick B. Davies⁴, Roberto Decarli⁵, Emanuele P. Farina^{1,6}, Knud Jahnke¹, Tohru Nagao⁷, Nozomu Tominaga^{8,9}, and Feige Wang^{10,11,12}

Why IR lines?

Temperature dependence of optical lines **Dust obscuration** with increasing SFR

Spinoglio & Malkan 1992

Dust obscuration

Obscured phases during evolution

Dominate cosmic noon, dawn?

Dust obscuration

Obscured phases during evolution

Dominate cosmic noon, dawn?

Dust obscuration (even at low metallicities)

Obscured phases during evolution

Dominate cosmic noon, **dawn?**

MOSDEF survey (1.5 < z < 3.5)

E(B-V)_{neb} ∝ SFR ∝ decreasing O/H

Reddy+15, Shivaei+20a

Dust obscuration (even at low metallicities)

Dust at low metallicities

Dust at low metallicities

Dust produced in massive star winds?

Direct method (DM)

optical nebular lines + auroral lines (Te)

Strong-line methods

few bright lines, fainter galaxies Calibrations (~0.7 dex, Kewley & Ellison 08)

Secondary nitrogen production channel

Direct method (DM)

optical nebular lines + auroral lines (Te)

Strong-line methods

few bright lines, fainter galaxies Calibrations (~0.7 dex, Kewley & Ellison 08)

Secondary **nitrogen** production channel

IR lines are insensitive to **Te effects**

- Inhomogeneities
- t²-problem (Peimbert 67)
- Low-Te components (PNe; Liu+06)

IR lines are insensitive to **Te effects**

- Inhomogeneities
- t²-problem (Peimbert 67)
- Low-Te components (PNe; Liu+06)

IR lines are insensitive to **Te effects**

- Inhomogeneities
- **t²-problem** (Peimbert 67)
- Low-Te components (PNe; Liu+06)

R abundance tracers

Few IR-based diagnostics in the market

Photoionisation, relies on **N/O-OH** prescription (Nagao+11, Pereira-Santaella+17, Herrera-Camus+18)

Empirical calibration (Fernández-Ontiveros+16,17)

Nebular IR lines (Spitzer + Herschel + SOFIA): [NeII]_{12.8} [NeIII]_{15.6} [SIII]_{18.7,33.5} [SIV]_{10.5} [OIII]_{52,88} [NIII]₅₇ [NII]_{122,205} + Br α Pf α Hu α Photoionisation models (O/H, N/O, logU) Star formation and AGN models (Fernández-Ontiveros+21, Pérez-Díaz+22)

28 dwarfs, 19 solar-like starbursts, 9(U)LIRGs, 8 High-z galaxies + 58 AGN

(0.1 < z < 3)

Fernández-Ontiveros+21, Pérez-Díaz+22

 $Ne235 = ([NeII]_{12.8} + [NeIII]_{15.6} + [NeV]_{14+24}) / H$

 $Ne23Ne5 = ([NeII]_{12.8} + [NeIII]_{15.6}) / [NeV]_{14+24}$

 $Ne235 = ([NeII]_{12.8} + [NeIII]_{15.6} + [NeV]_{14+24}) / H$

 $Ne2Ne3 = [NeII]_{12.8} / [NeIII]_{15.6}$

HCm-IR is publicly available

https://www.iaa.csic.es/~epm/HII-CHI-mistry.html

← → ♂ ŵ	⑦ ▲ https://www.iaa.csic.es/~epm/HII-CHI-mistry.html	⊡ ☆	III\ 🗉 🧿 🤷 📲 🎍 🗏
HOCU	N		
	HII-CHI-mistry		
HII-CHI-mistry is a collection of python subroutines aimed at the calculation of chemical abundances and physical properties using emission line fluxes from ionized gaseous nebulae. A complete description and instructions can be downloaded from here. These are the available different versions:			
HII-CHI-mistry . Calcul galaxies. HII-CHI-mistry-UV . C HII-CHI-mistry-IR . Ca HII-CHI-mistry-Teff . C	ation of oxygen, nitrogen-to-oxygen ratio chemical abundances and ionization parameter using optical emission lines both for massiv alculation of oxygen, carbon-to-oxygen chemical abundances and ionization parameter using ultraviolet emission lines. culation of oxygen, nitrogen-to-oxygen chemical abundances and ionization parameter using infra-red emission lines. alculation of the equivalent effective temperature of the ionizing source and the ionization parameter using optical emission lines and	e clusters and for Narrow I the metallicity, if available	ine Regions of Seyfert 2

<u>Enrique Pérez-Montero</u>. IAA-CSIC Last update: 2020, July

This program has been made thanks to the financial support from the Spanish AYA project Estallidos

IR vs optical abundances

~0.2 dex scatter from aperture, Te, Av

Fernández-Ontiveros, Pérez-Montero+21

Fernández-Ontiveros, Pérez-Montero+21

To be explored with JWST in nearby resolved HII and AGNs

Pérez-Díaz+22

Spinoglio+22

Beware of N/O-based metallicities

Relies on N/O-OH (Nagao+11, Pereira-Santaella+17)

Pérez-Montero 14

Beware of N/O-based metallicities

Fernández-Ontiveros+21

Gas mixing in 'deep-diving' ULIRGs

Pérez-Díaz+23 arXiv:2306.14843 (also Chartab+22)

Gas mixing in 'deep-diving' ULIRGs

arXiv:2306.14843

Gas mixing in 'deep-diving' ULIRGs

Future IR spectroscopic observatories?

HCm-IR robust chemical abundances from nebular IR lines Te effects, obscuration, N/O

JWST + PRIMA? + ALMA local cosmic noon high-z

thanks!