Finding and characterising the first galaxies in the Universe with JWST

James Trussler

The University of Manchester

C. Conselice, N. Adams, D. Austin, L. Ferreira, T. Harvey, Q. Li, K. Nakajima, R. Maiolino, R. Windhorst, E. Zackrisson

European Research Council Established by the European Commission

First galaxies: Direct

Pop III: the first stars (pure hydrogen and helium)

z=8, 10⁶ M_☉ Pop III galaxy

Zackrisson+11 models

Non-Pop III Spectrum

Trussler+23

Lack of metal lines

Ha emission

z=8, 10⁶ M_{\odot} Pop III galaxy Trussler+22 $H\alpha$ **Strong Ha** 22 $H\beta$ $Ly\alpha$ $\mathrm{H}\gamma$ 24 AB magnitude ${\rm H}\delta$ $\mathrm{He}~\mathrm{II}$ $\lambda 4686$ ${\rm He~II}$ $\lambda 1640$ 30 F200W F277W F356W F444W F560W F770W 32 2 3 6 7 8 1 4 5 $\lambda_{\rm obs}~(\mu{\rm m})$

9

[O III] emission

Colour-Colour selection

[S III] emission

Colour-Colour selection

Colour-Colour selection

MIRI imaging H α , [S III]

NIRCam vs MIRI

What **NIRCam** can detect in **1 hour**...

...**MIRI** detects in **50 hours**

NIRCam vs MIRI

What **NIRCam** can **survey and detect** in **1 hour...**

NIRCam vs MIRI

...MIRI surveys and detects in 200 hours

Credit: NASA, ESA, CSA, STScI and Webb ERO Production Team

MIRI: gravitational lensing

He II $\lambda 1640$ emission

He II $\lambda 1640$ emission

NIRCam medium-band imaging surveys that search for strong He II λ1640 emitters:

~0.15–0.30 mag signal

1-16 h for 5σ detection

Trussler+22

He II λ 1640 equivalent width

He II λ 1640 equivalent width

Have we found Pop III candidates?

Distinguishing between Pop III and DCBH

Pop III galaxies and DCBH have distinct colours

First galaxies: Indirect

When cosmic dawn **breaks**: Evidence for **evolved** stellar populations in **7** < **z** < **12** galaxies

Trussler+23, in prep.

z~10.5 Balmer break candidate

F444W excess

Trussler+23, in prep.

z~8 Balmer break candidate

Trussler+23, in prep.

Balmer break selection

See also Laporte+21

Trussler+23, in prep.

Balmer break selection

See also Laporte+21

Trussler+23, in prep.

Balmer break selection

See also Laporte+21

Trussler+23, in prep.

Inferred stellar ages

Balmer break seemingly a good predictor of the mass-weighted stellar age?

Ages_{MW}: ~75–175 Myr, i.e. z=13–14

Inferred stellar ages

Weaker trends at z~8: **F444W** now probes **[O III] + Hβ**, thus providing additional **constraints** on the **current SFRs**

Trussler+23, in prep.

Inferred star formation histories

Deep NIRSpec continuum spectroscopy and **MIRI imaging** will provide the strongest indirect constraints on the onset of star formation in the Universe

Trussler+23, in prep.

NIRCam wide-band photometry

NIRCam medium-band photometry

NIRCam medium-band photometry

NIRCam medium-band photometry

James Tru:

Strong emission lines

[O III], Hβ

Weak emission lines

[O II], [Ne III], H γ , H δ etc.

Weak emission lines

When **combined** together, these individually **weak** emission lines can have a **non-negligible contribution** to **broadband photometry**, **mimicking** the **Balmer break signature**

The Balmer break as a proxy for stellar age

The Balmer break as a proxy for stellar age

star formation history, reaching 0.4 mag in > 250 Myr

The Balmer break can't do it all

Carnall+18 Bagpipes templates

—> The Balmer break is **complexly dependent** on the **star formation history**

NIRSpec PRISM + MIRI imaging needed for best possible SFH constraints

Summary

NIRCam + MIRI imaging will enable us to identify Pop III candidates

NIRSpec spectroscopy of He II λ1640 will determine their Pop III nature

James Trussler

Medium-band imaging is essential to reliably identify Balmer breaks

NIRSpec continuum spectroscopy + MIRI imaging will provide the best indirect constraints on the onset of star formation in the Universe

Magnitudes and masses

The **Balmer break candidates** are **comparable in brightness** to the **control sample**

The **higher stellar masses** inferred are therefore an outcome of the SED-fitting process (and the assumptions therein)

Galaxy sizes

We find **no indication** that any of our **Balmer break candidates** are **point sources**, thus none of these galaxies likely harbour a substantial **AGN component**