

Cáceres-Burgos (RUG)

STRONG LINE EMITTERS AT $z \simeq 7 - 8$: FIRST DETECTION OF $H\alpha$ emission in INDIVIDUAL GALAXIES WITH JWST **Speaker:** Pierluigi Rinaldi

Collaborators: K. Caputi, E. Iani, V. Kokorev, R. Navarro-Carrera, L. Constantin, S. Gillman, P. Pérez-González, L. Colina, G. Östlin & MIRI high-z team

first billion vears o

6th edition of the CECC team conference cyo

Marseille, July 3th -

rijksuniversiteit groningen

STRONG LINE EMITTERS AT $z \simeq 7 - 8$

STRONG LINE EMITTERS AT $z \simeq 7 - 8$

STRONG LINE EMITTERS AT $z \simeq 7 - 8$

Which are the main sources of the **Cosmic Reionization?**

• Stars (in galaxies);

- They represent the main source of He⁺ Reionization
 - **Other alternatives** have been discussed in the literature
 - •SNs;

•QSOs.

- •X-ray binaries;
- Dark Matter decay.

They represent the main source of H Reionization

STRONG LINE EMITTERS AT $z \simeq 7 - 8$

them? High-redshift galaxies can be detected and identified using strong emission lines (e.g., LAEs have been extensively used as **lighthouses** to study the high redshift Universe)

Understanding the formation and evolution of the first galaxies at high redshift!

candidate at z = 13.27 (Harikane+22)

STRONG LINE EMITTERS AT $z \simeq 7 - 8$

High-redshift § detected and strong emission (e.g., LAEs have used as lightho high redshift Un

Understanding ti evolution of the high redshift!

Wavelength (microns)

JWST is **finally operating** and is opening a **new window** into the **Early Universe** by detecting and identifying rest-frame **optical lines** such as: [OII] $\lambda 3727$, H $\beta \lambda 4862$, [OIII] $\lambda \lambda 4959$, 5007, but also H $\alpha \lambda 6562$...

The MIRI Deep Imaging Survey observations

- 63 hours total (48.75h net exposure time) with F560W (PID: 1283) coordinated parallels: ~40h with NIRCam and ~20h with NIRISS
- Primary MIRI field has deep HST, X-ray, ALMA and MUSE etc + deep NIRCam, NIRISS
- Parallels fall in areas with deep HST imaging (GOODS-S, P2, P3)

3 different teams (Copenhagen, Groningen, and Madrid) worked on the data reduction by adopting three different data reduction techniques in order to maximize the quality of the final product. A modified version of the official JWST pipeline has been adopted.

Several artifacts from the official JWST pipeline:

- Vertical and horizontal stripes;
- Strong background gradient;
- Strong background inhomogeneities;
- "Concentric waves" patterns.

Almudena Alonso-Herrero (CAB) Javier Alvarez-Márquez (CAB); Marianna Annunziatella (CAB); Leindert Boogaard (MPiA); Karina Caputi (Groningen); Luis Colina (CAB); Luca Costantin (CAB); Danial Langeroodi (DARK); Daniel Dicken (STFC); Macarena Garcia-Marin (STScI); Steven Gilman (DTU); Thomas Greve (DTU); **Edoardo Iani (Groningen);** Olivier Ilbert (LAM); Iris Jermann (DTU); Sarah Kendrew (STScI); Mattia Libralato (STScI); Jens Melinder (Stockholm); Thibaud Moutard (LAM); Göran Östlin (Stockholm Univers Pablo Perez-Gonzalez (CAB); John Pye (Leicester); Pierluigi Rinaldi (Groningen); Tuomo Tikkanen (Leicester); Fabian Walter (MPiA); Martin Ward (Durham); Gillian Wright (STFC); and the MIRI-EC high-z team.

Spitzer

MIRI **F560W**

THE DATASET

Wavelength Coverage

HST/UVIS	F225W	F275W	F336W		
HST/ACS	F435W	F606W	F775W	F814W	F850LF
HST/WFC3	F098M	F105W	F125W	F140W	F160W
JWST/NIRCam	F182M	F210M	F430M	F444W	F460W
JWST/MIRI Mag	F560W \downarrow $5\sigma \simeq 2$	9.5			

CATALOGUE & SAMPLE SELECTION STRONG LINE EMITTERS AT $z \simeq 7 - 8$

SED fitting with LePHARE (BC03 & SB99 models)

SExtractor - hot-mode

HUDF UNDER INVESTIGATION 133 sources at RIGHT NOW $z \simeq 7-8$ 5156 source in total

HUNTING (H β + [OIII]) & H α emitters Strong Line Emitters at $z \simeq 7 - 8$

- 58 candidates at $z \simeq 7 8$;
- 18 sources show an excess in F430M or F444W => $(H\beta + [OIII])$ emitters;
- 12 of them show an excess in F560W => $H\alpha$ emitters;
- 40 sources classified as non-emitters.

 $(H\beta + [OIII])$

$\Delta mag = mag_X - mag_{cont} < -0.2 mag$

 $(H\alpha + [NII] + [SII])$

PROPERTIES OF THE (H β + [OIII]) EMITTERS STRONG LINE EMITTERS AT $z \simeq 7 - 8$

COMPARISON BETWEEN $(H\beta + [OIII])$ and $H\alpha$ EWs

4.0

Ψ() Ηα)/Ψ

3.0

We retrieve the expected correlation between both nebular emission lines $H\alpha$ and $(H\beta + [OIII])$, since these lines are all generated by the effects of stellar ionizing radiation

The NIRCam flux excess is **mainly driven** by $H\beta$, these sources correspond to cases with nonnegligible dust extinction.

STRONG LINE EMITTERS AT $z \simeq 7 - 8$

H α emitters in the context of SFR – M_{*}STRONG LINE EMITTERS AT $z \simeq 7 - 8$

$H\alpha$ EMITTERS IN THE CONTEXT OF THE **STAR FORMATION RATE DENSITY**

STRONG LINE EMITTERS AT $z \simeq 7 - 8$

16

The evolution $EW_0(H\alpha)$ with redshift can be assumed as an observational proxy (i.e., \swarrow_{10^3} which does not depend on which does not depend on \Im models) for the sSFR – z relation, therefore it can help us to constrain the star formation history of galaxies at very high redshift.

E S 10²

101

EVOLUTION OF EW₀(Ha) OVER COSMIC TIME STRONG LINE EMITTERS AT $z \simeq 7 - 8$

CONCLUSIONS AND NEXT STEPS STRONG LINE EMITTERS AT $z \simeq 7 - 8$

In less than one year, JWST has demonstrated its capability the unfold the high redshift Universe giving us the opportunity to better constrain how galaxies formed and evolved over cosmic time.

- Huge advantages by combining **medium-band** and **broadband** from JWST => unique opportunity to look for high redshift (strong) emitters;
- Over 58 sources at $z \simeq 7 8$, 18 show (H β + [OIII]) excess. Among them 12 show an "H α " excess" (a quarter of **all** the MIRI-detected galaxies at $z \simeq 7 - 8$);
- •4 HAEs have been spectroscopically confirmed ([OIII] doublet) with FRESCO data. A further analysis will help to confirm the rest of the sample;
- Most of the HAEs we studied are starburst galaxies or on the way to/from the starburst cloud;
- Majority of the our (H β + [OIII]) emitters are very young galaxies (best-fit ages < 10' yr) => first major star formation episode. A few others are almost as old as the universe at their redshifts with significant stellar mass (> $10^8 M_{\odot}$), suggesting that they may be experiencing a rejuvenation effect;
- The identified H α emitters show a variety of EW₀ values (200 3000 Å). We also find that EW₀(H α) should evolve as $\propto (1 + z)^{2.1} =>$ larger samples of galaxies to confirm this result;
- MIRI has demonstrated that we can systematically observe H α emitters at very high-z (z > 7), offering us the opportunity to better constrain the star formation history at those z.

SCAN ME

The paper has been accepted for publication in ApJ and it is going to be published soon

What's next?!

We want to study the H α emission from a spectroscopical point of view - aka we need spectra!

What's next?!

Understanding the properties of the HAEs in the context of the Epoch of Reionization. Which role did they play? Could the strong emitters have played a key role in reionizing the Universe?

MIDIS: The Role of Strong H α Emitters at $z \simeq 7-8$ during the Epoch of Reionization - Constraints from JWST

P. RINALDI,¹ K. I. CAPUTI,^{1,2} AND MIRI GTO

¹Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700AV Groningen, The Netherlands ²Cosmic Dawn Center (DAWN), Denmark

European Consortiu

Le galassie in cui è presente formazione stella re producono una grande quantità di fotor