

CONSTRAINING PROPERTIES OF HIGH REDSHIFT QUASAR HOSTS WITH JWST

SABRINA BERGER (PHD STUDENT AT UNIVERSITY OF MELBOURNE) SHEDDING NEW LIGHT ON THE 1ST BILLION YEARS OF THE UNIVERSE - MARSEILLES 2023

IMAGE CREDIT: NASA (M. KORNMESSER)

HIGH-ZQUASARS

- z greater than about 6
- Super luminous and highly accreting supermassive black holes mysterious formation history!
 - M_{BH} > 10⁶ solar masses. How did they get so massive?

HIGH-ZQUASARS

- z greater than about 6
- Super luminous and highly accreting supermassive black holes mysterious formation history!
 - M_{BH} > 10⁶ solar masses. How did they get so massive?
- Need to better constrain the stellar mass to black hole mass ratio
 - In the near IR (rest frame optical/UV), we can disentangle stellar and quasar light for more accurate measurements of stellar mass, radius, etc.

WHY JWST?

- Launched in 2021 and has already had immense impact on high-z science
- **Much higher resolution than Hubble in the near-infrared**
- **NIRCam** is the best instrument for imaging high-z quasars
 - observes between 0.5 to 5.0 micrometers and has 29 filters

MODELS: MATT THOMAS & AMAN CHOKSHI, IMAGE CREDIT: LEONARDO FERREIRA (UVIC)

-		

							_
							-
			- 12				

WHY JWST?

- We need to carefully model the quasar's light to be able to subtract it off and see the underlying host
- Could only set upper limits on the infrared emission of high-z quasars with Hubble
- **Needed a higher resolution that** we have with JWST!

mag arcsec⁻

QUASAR HOSTS DETECTED WITH JWST

RECENTLY TWO HIGH-Z QUASAR HOSTS WERE DETECTED WITH JWST: J2255+0251 AND J2236+0032

J2236+0032

IMAGE CREDIT: DING ET AL., 2023

QUASAR HOSTS DETECTED WITH JWST

RECENTLY TWO HIGH-Z QUASAR HOSTS WERE DETECTED WITH JWST: J2255+0251 AND J2236+0032

J2236+0032

IMAGE CREDIT: DING ET AL., 2023

J2255+0251

QUASAR HOSTS DETECTED WITH JWST

RECENTLY TWO HIGH-Z QUASAR HOSTS WERE DETECTED WITH JWST: J2255+0251 AND J2236+0032

J2236+0032

IMAGE CREDIT: DING ET AL., 2023

J2255+0251

host not detected!

THE BLUETIDES SIMULATION **PROVIDES US WITH A MODEL FOR HIGH-Z QUASARS THAT WE CAN COMPARE WITH OBSERVATIONS**

- full hydrodynamic simulation run between z = 7 to z = 99 (Feng et al., 2015)
- •2 x 7040³ particles in a box with side length 400h⁻¹ Mpc
- 200 million star-forming galaxies
 - We take 108,000 of the most massive BHs
- star formation, feedback processes, and black hole accretion included

THESE HIGH-Z QUASARS SIT NEAR THE TOP END OF THE BLUETIDES SIMULATIONS AND HAVE VALUES CONSISTENT WITH THOSE PREDICTED BY BLUETIDES.

BERGER ET AL., 2023 (IN PREP)

10

WE CAN ALSO MAKE PREDICTIONS ON PROPERTIES SUCH AS THE SFR OF THE JWST QUASARS: SFR ~ 10²⁻³ SOLAR MASSES/YEAR.

BERGER ET AL., 2023 (IN PREP)

11

MOCK IMAGING

WE USE BAYESIAN METHODS TO DISENTANGLE THE QUASAR FROM ITS HOST.

$$P(\text{image}(\text{pixel})|\theta) =$$

where I_{CM} is the intensity of the convolved model we're fitting

BERGER ET AL., 2023 (IN PREP)

$$\frac{1}{\sqrt{2\pi\sigma(\text{pixel})^2}} \exp\left(\frac{(\text{image(pixel)} - I_{\text{CM}}(\text{pixel}))^2}{2\sigma(\text{pixel})^2}\right)$$

MOCK IMAGES OF QUASARS WITH SIMILAR BOLOMETRIC LUMINOSITIES AS THE JWST QUASARS

OUR MOCK IMAGES RECOVER SIMILAR EFFECTIVE RADII.

14

WE CAN ALSO MAKE MOCK IMAGES OF BLUETIDES GALAXIES WITHOUT A QUASAR FOR COMPARISON.

SUMMARY

- The newly observed quasar hosts with JWST match predictions from the BlueTides simulations
- Our mock imaging pipeline recovers accurate galactic radii post point source removal
- We can now make predictions for SFR, halo mass, etc. for the observed quasars using BlueTides data
- We're equipped with the tools to do more quasar host detection through our sensitive point source removal with future JWST data!

NEXTSTEPS

- Our JWST observing window is open now, and we'll get new NIRCam images of higher luminosity quasars in the next few weeks (already have one!)
- We're keen to answer questions such as
 - how does the observational bias affect our radius measurement?
 - how accurately can we constrain the black hole to stellar mass ratio?

IMAGE CREDIT: NASA

QUESTIONS?

Thanks to my wonderful mentors!

MADELINE MARSHALL

ASTRO 3D

More questions? sabrinastronomy

STUART WYITHE

Australian National University

