# THE WHO, WHAT, AND WHEN OF REIONIZATION

#### **CONSTRAINTS ON THE TIMELINE AND SOURCES**

PATTY BOLAN, MARUSA BRADAC, BRIAN LEMAUX THE RELICS, CLASH, GLASS, SURFSUP TEAMS

SHEDDING NEW LIGHT ON THE FIRST BILLION YEARS OF THE UNIVERSE 3 JULY 2023

### **THE BIG QUESTIONS**

**1. How did reionization progress?** 

2. What are the physical properties of first galaxies?

#### LENSED GALAXY SAMPLES DETECTING FAINT GALAXIES WITH NATURE'S MAGNIFYING GLASS







Abell 370











#### **SPECTROSCOPIC SEARCH FOR LYA**

#### **KECK OBSERVATORY**



W. M. KECK

#### CONSTRAINING THE NEUTRAL HYDROGEN FRACTION WITH FAINT GALAXIES

USING BAYESIAN ANALYSIS TO DETERMINE HOW IONIZED THE UNIVERSE IS AT Z ~ 6.7 AND Z~7.6



#### HOW DO WE USE LYMAN ALPHA EMISSION TO INFER THE IGM NEUTRAL FRACTION?



#### **INCLUSION OF A FAINT REFERENCE SAMPLE**

#### **MATCHING GALAXIES BY LUMINOSITIES**

The galaxies used in the reference sample at z ~ 6.0 have a similar luminosity distribution to those at high redshift

This allows for better isolation of ISM effects on Lya emission



Bolan et al., 2022 7



### ADDING TO REIONIZATION HISTORY

Our results are consistent with a late and rapid reionization, and agree with results from CMB and dark pixel fraction determinations

## PHYSICAL PROPERTIES OF LYMAN ALPHA EMITTERS

HOW DO LYA PROPERTIES AND PHYSICAL PROPERTIES CORRELATE?

#### **COMPARING LAES AND NONEMITTERS**

**ARE THERE DIFFERENCES IN PHYSICAL PROPERTIES?** 

Physical (stellar and UV) properties

- Stellar mass
- Age
- SFR and sSFR
- UV Beta slope
- UV luminosity
- CIII] upper limits

## **OTHER STUDIES**

WHAT MIGHT WE EXPECT TO SEE?

- Lower redshift studies (i.e. Hathi+16, Oyarzu+17, Chavez Ortiz+23) have found
- •Anticorrelation between Lya EW and UV brightness, beta slope, SFR, and M\*
- •LAEs tend to be brighter, have bluer beta slopes, and lower SFRs and M\*s than nonemitters





#### **PRELIMINARY RESULTS**

#### **PRELIMINARY RESULTS**

SED Property Distributions (weighted by P(z) and Lya EW fractions)



**Estimated stellar properties from SED fitting** 

### LIMITS ON CIII] STRENGTH AT Z ~ 7



### CONCLUSIONS

- 1. We infer a fairly fast and late reionization scenario where the neutral fraction of hydrogen drops from 0.83 to <0.25 within ~150 Myrs
- 2. We find no significant difference between the distribution of physical properties for LAEs and non emitters
- 3. We find CIII] emission in a typical sample of z~7 galaxies to be constrained to <20Å, implying that they do not have very extreme nebular emission properties

# THANK YOU!