

Core, disc and clump formation: do galaxies grow inside out in the first billion years?

William M. Baker,

Sandro Tacchella, Ben Johnson, Erica Nelson, Wren Suess, Francesco D'Eugenio + JADES (NIRCam & NIRSpec GTO teams)

Local to redshift $z\sim2$ universe

- We see many (quiescent) bulge and (star-forming) disc galaxies locally (Kormendy+2004, Simmard+2011 and many others)
- But of course: local spiral galaxies are not the progenitors of local ellipticals
- To find these progenitors we need to probe much more distant galaxies
- Multiple bulges at redshift 2, Lang+2014, Tacchella+2015, How do they assemble?

Tacchella+2015

We find this 3component galaxy at z=7.4 !

- Spectroscopic NIRSpec confirmed redshift of **7.4**
- Central core component
- Surrounding disc component
- Clump offset from the disc component

NIRSpec Spectrum

Colour gradients

• Clearly visible colour-gradient

Baker+2023

1 kpc

ForcePho

- ForcePho (Johnson+ in prep) is a forced photometry tool that fits multiple PSF convolved Sersic profiles simultaneously to each filter https://github.com/bd-j/forcepho
- We use it to fit a three-component model
- Central Core
- + Disc
- + Clump

ForcePho fits

Can see how ForcePho models the components well in each band

ForcePho Fits

 Corner fit showing fluxes and sizes for the Core and Disc components

Surface Brightness Profile

- PSF convolved model fits the data well (F356W)
- Can see how PSF smears out Core and Disc to larger radii

SEDs

Core Component

- SED fitting with Prospector (Johnson+ 2021)
- Non-parametric SFH (Continuity prior, Leja+ 2019)
- $\log(M_*/M_{\odot})$ = 8.39
- $t_{half} \approx 51 Myr$

• SFR $\approx 3 M_{\odot}/yr$

Disc Component

- Fit independently, but with the same fitting routine
- $\log(M_*/M_{\odot})$ = 8.3
- Relatively young $(t_{half} \approx 23 Myr)$
- SFR $\approx 10~M_{\odot}$ /yr

Clump Component

- Fit independently, but with the same fitting routine
- Can see that the clump has a distinct stellar population → might be a small merging galaxy?
- $\log(M_*/M_{\odot}) = 7.2$

Star-formation histories

- Disc appears to be undergoing a recent burst
- Core appears to be decreasing in SFR
- Core and Clump appear to be older, Disc appears to be younger

Surface Density profiles

 Disc responsible for most star-formation seen, but Core responsible for most of the stellar mass in the central region → inside-out growth?

Mass-size

How does this compare to the local universe?

- The core+disc plotted against local analogues (Hopkins et al. 2010)
- Core: pretty massive and dense!
- Within x2 of local massive ellipticals despite 1000x less massive overall

Conclusions

- Find Core, Disc and Clump components in a spectroscopically confirmed redshift 7.4 galaxy
- Disc is relatively young (t_{half} \approx 23Myr) and strongly star forming (SFR \approx 8 M_{\odot} /yr)
- Core appears to be older ($t_{half} \approx 51$ Myr) and more massive (log(M_*/M_{\odot})= 8.39) possibly a proto-bulge?
- Likely a progenitor of the kind of much more massive galaxy we see in the local universe!

JADES – JWST Advanced Deep Extragalactic Survey

- NIRCam + NIRSpec GTO teams
- Deep imaging and spectroscopy of GOODS-S and GOODS-N
- Recent JADES papers, Robertson+2023, Curtis-Lake+2023 → current highest (spectroscopically confirmed) redshift galaxy
- Bunker+2023, Tacchella+2023, Gnz11
- Also see Saxena+ 2023, Looser+2023, Witstok+2023 and many more!

Robertson+2023

Two-component Fit F277W F335M F090W F115W F150W F444W F200W F356W F410M - 2 Data - 0 Flux [nJy] Residual 0 - 2 Model 0

One and two component fits

AGN? – probably not

SFMS

