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different physics at different times.
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•What did the first stars look like? How and when how 
did they form? 

•How did they die and were they the LIGO black hole 
progenitors? Or the seeds of supermassive black holes?

•What determined the thermal history of the intergalactic 
medium? Are there new physics at play?

•What reionized the universe and when?

There’s still a lot of open  
astrophysical questions.
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If we want to understand the 
history of 21 cm signal, we have 
two primary statistical probes.
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SARAS-3

EDGES

On the global signal side, there’s a tension 
between a reported EDGES detection at z ≈ 17 

and a SARAS non-detection.



GMRT
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For the 21 cm power spectrum, a first 
generation of interferometers got us 

started, deploying different strategies.



Until last year, this was the state of the field:



HERA Collaboration (2022b)

Using 21cmMC, a wide range of power spectra were 
still possible, even with CMB and galaxy LF constraints.
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350 14-m diameter dishes

Because the 21 cm fluctuations 
are faint, HERA is huge.



HERA is a drift scan instrument that maps 
out a stripe of constant declination.



Our biggest problem 
is foregrounds.
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Synchrotron Foregrounds

4 - 5 orders  
of magnitude!

Frequency

Intensity

21cm Signal

The key to separating out 
foregrounds is their 

spectral smoothness.



So instead of spherically averaged Fourier space… 

Barkana (2009), Morales & Wyithe (2010) 



So instead of spherically averaged Fourier space… 



We separate out Fourier modes parallel and 
perpendicular to the line of sight.
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And we find a “window.”



What does HERA actually measure?



Every dish looks straight up with a ~10° FoV.



Interferometers measure Fourier modes 
on the sky, which we call “visibilities.”
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Short 
separations 
measure long 
wavelength, 
“lazy” modes 
on the sky.



Long 
separations 
measure short 
wavelength, 
“fast” modes 
on the sky.
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Since frequency maps to distance…

Frequency Baseline Length
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The maximum delay 
of foregrounds for a 
baseline is simply 
the light travel time.

Wind
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Parsons et al. (2012)
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Our design for 
HERA’s configuration 
maximizes sensitivity 
on short baselines.

Dillon & Parsons (2016)
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Working outside the wedge 
manages our ignorance — we 
trade sensitivity for robustness.



Foreground avoidance won’t work 
without precision calibration.

Baselinei j



HERA was designed to be calibrated using the 
internal consistency of redundant baselines.

Liu et al. (2010)

All without an explicit sky or instrument model!
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HERA Collaboration (2022a)

With just 18 nights and 40 antennas, HERA set world-
leading upper limits on the 21cm power spectrum.



HERA Collaboration (2022b)

Which constrained the space of models, largely by 
ruling out an IGM unheated by X-rays at z = 8.



Redundant Calibration 
Dillon, Lee, et al. (2020)

Absolute Calibration 
Kern, Dillon, et al. (2020)

Systematics Mitigation 
Kern, Parsons, Dillon, et al. (2019ab)

Power Spectrum 
Error Estimation 

Tan et al. (2021)

End-to-End Validation 
Aguirre et al. (2022)

Power Spectrum Limits 
HERA Collaboration (2022a)

Astrophysical Interpretation 
HERA Collaboration (2022b)



But all that was with only 18 nights 
of data… and we had 94 good 

nights from that season.

HERA Collaboration (2023)



Adapting the analysis techniques to the 
larger data set, we picked two frequency 

bands with minimal RFI contamination.

HERA Collaboration (2023)
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We divided our observed LSTs into five fields.

HERA Collaboration (2023)
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And thus set power spectrum upper 
limits across bands and fields. 
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So here’s where we were again…

HERA Collaboration (2022b)



With a full season, our limits come down by more 
than a factor of 2 at both redshifts.

HERA Collaboration (2023)



Our posterior for the power spectrum with  
21cmMC tightens substantially.

HERA Collaboration (2023)



The big shift comes from showing the IGM 
was heated by z = 10.4, since a cold IGM 

produces a bright 21 cm signal.

HERA Collaboration (2023)



If the IGM was 
heated by high-mass 
X-ray binaries —- as is 
generally believed —- 
this result rules out 
high-metallicity 
HMXBs (which are 
less X-ray-efficient per 
unit SFR) and thus 
requires heating 
driven by evolved 
low-metallicity stars.

HERA Collaboration (2023)



Four independent theoretical models agree 
the IGM was heated before z = 10.4, likely 

by low-metallicity HMXB. 

HERA Collaboration (2023)



However, we are not yet able to say much about 
the tension between EDGES and SARAS or the 

exotic models invoked to explain EDGES.

HERA Collaboration (2023)



What’s next for HERA?
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We just finished an observing 
season (~150 good nights) 
observing with over 200 

antennas as we build out to 350.



Everything but the 
dishes is new, 
including our wide-
band Vivaldi feeds 
that go from 50 — 250 
MHz (4.7 > z > 29).

Photo: Ziyaad Halday



With a full season and the full array, we’ll 
have the sensitivity to detect the 21 cm signal 

and distinguish between models.

HER
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Figure: Aaron Ewall-Wice



Liu et al. (2016)

This will let us tightly constrain the 
ionization history of the universe.

Liu et al. (2016)

Which means we can precisely measure 
the ionization history of the universe.



And, perhaps increase the significance of a 
detection of non-zero Σmν with CMB-S4.

Liu et al. (2016)
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There’s also complex, interconnected 
astrophysics to explore before the EoR, 

even if EDGES is wrong.



Pop II

Pop III

X-rays

Pop II

Pop III

X-rays

Mason et al. (2022)

The power spectra 
we measure with 

HERA will also 
tightly constrain 

parameters 
describing early 

star formation and 
X-ray heating.



With a few years of observing, we may 
detect velocity acoustic oscillations, 

providing a new standard ruler at z ≈16.

Muñoz et al. (2019)
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What comes after HERA?
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HERA is the easiest path to a high-σ 
detection with robust foreground removal, 
but it is difficult to precisely model…

…a bigger array of smaller, simpler 
antennas with larger fields of view 

is likely the way forward.
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Measure antenna 
voltages         .

There’s a problem with how we measure visibilities.

This scales like O(N2)!

Fourier transform 
to frequency: 

Correlate antennas to form visibilities:



All telescopes are 
Fourier transformers. 



to positions on the focal plane.
A telescope converts angles on the sky



A telescope converts photon momenta
to positions on the focal plane.
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If antenna positions xi are on a regular grid, 
we can directly sample the electric field, FFT, 

and square to get beam-weighted maps… 
effectively correlating in O(N log N)!

can be rewritten suggestively as…

Tegmark & Zaldarriaga (2009)



An FFT Telescope can be bigger than HERA.



An FFT Telescope can be bigger than HERA.



An FFT Telescope can be bigger than HERA.

Much, much bigger.
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An FFT Telescope needs to be…

•Co-planar.

•Made up of identical antenna 
elements with identical beams.

•On a regular or hierarchically 
regular grid.

•Calibrated in real time.

Tegmark & Zaldarriaga (2009, 2010)



Real-time redundant-baseline calibration 
of regular arrays is precisely what we’re 

learning to do with HERA!
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FFTTs could map the majority of the volume  
of the observable universe, giving us…

Unprecedented constraints on the standard model of cosmology: 
• Orders of magnitude better than Planck, e.g. ΔΩk ≈ .0002 and ΔΣν ≈ 7 meV 

(Mao et al. 2008)

Direct measurements of small-scale 
density fluctuations at early times: 
• Warm dark matter (Sitwell et al. 2013) 
• Tests of inflation via non-Gaussianity 

(Cooray et al. 2008) or spectral index 
running (Mao et al. 2008)

A precise thermal history of  
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• Primordial black hole evaporation 
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In Summary:
•With a full season of HERA phase I and 

conservative analysis techniques, we’ve set a 
world-leading upper limit on the 21 cm power 
spectrum and ruled out cold reionization.

•With our full array and wider bandwidth, we 
should have the sensitivity necessary to detect and 
characterize the 21 cm signal from the EoR and the 
Cosmic Dawn.

•One day, an FFTT will draw on the instrumental 
and analysis legacy of HERA to fulfill the promise 
of 21 cm cosmology.


