ASTRO 3D

Simulations of the EoR

Fisher matrix forecasts on the astrophysics of galaxies during the EoR

University of Melbourne, Australia ARC Centre of Excellence for All Sky Astrophysics in 3D

Balu+, MNRAS, 520, 3368-3382 (2023) Balu, Greig & Wyithe; arXiv:2305.05104

balu.sreedhar@student.unimelb.edu.au

<u>s-balu.github.io</u>

GECO-16: Shedding new light on the first billion years of the Universe

BALU SREEDHAR

4th July 2023

Prof Stuart Wyithe

Dr. Bradley Greig

Epoch of Reionisation (EoR)

Credits: Aman Chokshi, University of Melbourne

What do we measure?

21-cm signal

What do we measure?

$$\delta T_b(\nu) = \frac{T_S - T_{\gamma}}{1 + z} (1 - e^{-\tau_{\nu_0}})$$

$$\approx 27 x_{\text{HI}} \left(1 + \delta_{nl}\right) \left(\frac{H}{dv_r/dr + H}\right)$$

21-cm signal

What do we measure?

21-cm signal

What do we actually measure?

e.g. EDGES, SARAS, etc

HI 21-cm statistics

e.g. MWA, LOFAR, SKA, etc

Balu+, MNRAS, 520, 3368-3382 (2023)

What do we actually measure?

e.g. EDGES, SARAS, etc

HI 21-cm statistics

e.g. MWA, LOFAR, SKA, etc

Balu+, MNRAS, 520, 3368-3382 (2023)

The Challenge...

Credits: Simon Mutch <u>s-balu.github.io</u> balu.sreedhar@student.unimelb.edu.au

NRC NRC

The Challenge...

Credits: Simon Mutch

The Challenge...

Credits: Simon Mutch

The Challenge...

Credits: Simon Mutch

The Challenge...

Credits: Simon Mutch

- SMF (z=0.6-8) [Mutch+ (2016), Qin+ (2017)]
- BH-M $_{\star}$ relation (z=0.6) [Qin+ (2017), Marshall+ (2019)]
- QSO UV LFs (z>1)[Qin+ (2017), Marshall+ (2020)]
- Ionizing emissivity (z>4) [Mutch+ (2016), Davies+ (2019)]
- Galaxy UV LF (z>5) [Liu+ (2016), Park+ (2017), Qiu+ (2019]
- Thompson scattering optical depth (z>6)[Mutch+ (2016), Geil+ (2016)]
- Galaxy size evolution (z>5) [Liu+ (2017), Marshall+ (2019)]
- LBG correlation functions (z>4)[Park+ (2017), Qiu+ (2018)]
- •Constraining UV escape fraction [Mutch+ (2023)]
- High-z Ly α optical depth [Qiu+2021]

Computationally expensive

simulations + RT

Meraxes SAM

PARAMETER EXPLORATION

No direct modelling of galaxies

Semi-numerical models (e.g. 21cmFAST)

- SMF (z=0.6-8) [Mutch+ (2016), Qin+ (2017)]
- BH-M $_{\star}$ relation (z=0.6) [Qin+ (2017), Marshall+ (2019)]
- QSO UV LFs (z>1)[Qin+ (2017), Marshall+ (2020)]
- Ionizing emissivity (z>4) [Mutch+ (2016), Davies+ (2019)]
- Galaxy UV LF (z>5) [Liu+ (2016), Park+ (2017), Qiu+ (2019]
- Thompson scattering optical depth (z>6) [Mutch+ (2016), Geil+ (2016)]
- Galaxy size evolution (z>5) [Liu+ (2017), Marshall+ (2019)]
- LBG correlation functions (z>4) [Park+ (2017), Qiu+ (2018)]
- •Constraining UV escape fraction [Mutch+ (2023)]
- High-z Ly α optical depth [Qiu+2021]

Computationally expensive

simulations + RT

Meraxes SAM

SIMPLE BUT DETAILED PRESCRIPTIONS Galaxy population Semi-analytic

PARAMETER EXPLORATION

No direct modelling of galaxies

Semi-numerical models (e.g. 21cmFAST)

- SMF (z=0.6-8) [Mutch+ (2016), Qin+ (2017)]
- BH-M $_{\star}$ relation (z=0.6) [Qin+ (2017), Marshall+ (2019)]
- QSO UV LFs (z>1)[Qin+ (2017), Marshall+ (2020)]
- Ionizing emissivity (z>4) [Mutch+ (2016), Davies+ (2019)]
- Galaxy UV LF (z>5) [Liu+ (2016), Park+ (2017), Qiu+ (2019]
- Thompson scattering optical depth (z>6)[Mutch+ (2016), Geil+ (2016)]
- Galaxy size evolution (z>5) [Liu+ (2017), Marshall+ (2019)]
- LBG correlation functions (z>4)[Park+ (2017), Qiu+ (2018)]
- •Constraining UV escape fraction [Mutch+ (2023)]
- High-z Ly α optical depth [Qiu+2021]

- Radiative cooling, Star formation, Supernova feedback, AGN, etc
- Coupled with 21cmFAST for reionisation calculations

Meraxes SAM

Temporally and spatially coupled treatment of reionisation

Augmentation: What & Why?

~ 100 Mpc typical X-ray mean free path

Augmentation: What & Why?

Z

Augmentation: What & Why?

Z

Augmentation: What & Why?

Reionisation histories

21-cm Global/Sky-Averaged signal

- L210 has less number of DM haloes w.r.t L210_AUG.
 - L210 has less photon sources w.r.t L210_AUG
- L210_AUG_highX(lowX) has more(less) amount of Xrays.
 - More heating in highX.

21-cm power spectrum

What can we learn using the 21-cm PS from the EoR?

- 210 h^{-1} Mpc box; $N_{eff} \sim 10^{12}$.
- Augmented GENESIS L210_N4320 *N*-body simulation.
- Statistically complete population of all atomically cooled galaxies down from $z \sim 20$.
- Calibrated w.r.t UV luminosity functions, CMB optical depth, IGM neutral fraction observations.

ASTRO 3D

L210 AUG & Meraxes SAM

Ionisation morphology

"... first model of both reionisation and galaxy formation with low-mass galaxies and large enough to explore the impact of X-rays on the 21-cm signal."

Balu+, MNRAS, 520, 3368-3382 (2023)

Something else we did... $z \gtrsim 12$ JWST analogue galaxies

Implications of $z > \sim 12$ JWST galaxies for galaxy formation at high redshift

Yuxiang Qin, Sreedhar Balu, J. Stuart B. Wyithe

ASTRO 3D

arXiv:2305.17959

- Using the forward-modelled JWST photometry, we looked for analogues for 8 of the $z \gtrsim 12$ galaxies.
- Faint galaxies ($M_{
 m UV}\gtrsim -19$) are consistent with ΛCDM ; slight tension for massive $z \sim 12$ galaxies.
- For $z \gtrsim 16$ JWST galaxy candidates, boosted starforming efficiencies and reduced feedback regulation are necessary relative to models of lower-redshift populations.

What can we learn using the 21-cm PS from the EoR?

What can we learn using the 21-cm PS from the EoR?

Artist's impression of a DM halo

Galaxy formation & evolution crash course

Mutch+, MNRAS, 462, 250–276 (2016)

Galaxy formation & evolution crash course

Intergalactic medium

Mutch+, MNRAS, 462, 250–276 (2016)

Galaxy formation & evolution crash course

Intergalactic medium

Mutch+, MNRAS, 462, 250–276 (2016)

Galaxy formation & evolution crash course

Intergalactic medium

Mutch+, MNRAS, 462, 250–276 (2016)

Gas cools

Cold gas disk

Gas cools

Galaxy formation & evolution crash course

Intergalactic medium

Mutch+, MNRAS, 462, 250–276 (2016)

Galaxy formation & evolution crash course

- 1. $\alpha_{\rm SF}$ star formation efficiency
- 2. $\Sigma_{\rm SF}$ minimum cold gas needed for star formation to begin

Mutch+, MNRAS, 462, 250-276 (2016)

THE UNIVERSITY OF

Galaxy formation & evolution crash course

- 1. $\alpha_{\rm SF}$ star formation efficiency
- 2. $\Sigma_{\rm SF}$ minimum cold gas needed for star formation to begin

Mutch+, MNRAS, 462, 250-276 (2016)

THE UNIVERSITY OF

Galaxy formation & evolution crash course

- 1. $\alpha_{\rm SF}$ star formation efficiency
- 2. $\Sigma_{\rm SF}$ minimum cold gas needed for star formation to begin
- 3. η_0 Supernova reheat efficiency
- 4. ε_0 Supernova ejection efficiency

Mutch+, MNRAS, 462, 250-276 (2016)

Gas cools down to the DM halo

Gas cools,

Gas cools

Galaxy formation & evolution crash course

Intergalactic medium

- 1. $\alpha_{\rm SF}$ star formation efficiency
- 2. $\Sigma_{\rm SF}$ minimum cold gas needed for star formation to begin
- 3. η_0 Supernova reheat efficiency
- 4. ε_0 Supernova ejection efficiency
- 5. L_X/SFR X-ray luminosity per SFR of the galaxy
- 6. E_0 Minimum energy of the X-ray photon capable of escaping the galaxy

Mutch+, MNRAS, 462, 250-276 (2016)

Gas cools down to the DM halo

Gas cools,

Gas cools

 $f_{\rm esc} = f_{\rm esc,0}$

Galaxy formation & evolution crash course

Intergalactic medium

U

- 1. $\alpha_{\rm SF}$ star formation efficiency
- 2. $\Sigma_{\rm SF}$ minimum cold gas needed for star formation to begin
- 3. η_0 Supernova reheat efficiency
- 4. ε_0 Supernova ejection efficiency
- 5. L_X/SFR X-ray luminosity per SFR of the galaxy
- 6. E_0 Minimum energy of the X-ray photon capable of escaping the galaxy
- 7. $f_{\rm esc,0}$ UV photons' escape fraction normalisation.
- 8. $\alpha_{\rm esc}$ UV escape fraction power law dependence on redshift

Mutch+, MNRAS, 462, 250-276 (2016)

What can we learn using the 21-cm PS from the EoR?

- 1. α_{SF} star formation efficiency
- 2. Σ_{SF} minimum cold gas needed for star formation to begin
- 3. η_0 Supernova reheat efficiency
- 4. ε_0 Supernova ejection efficiency

- 5. L_X/SFR X-ray luminosity per SFR of the galaxy
- 6. E_0 Minimum energy of the X-ray photon capable of escaping the galaxy
- 7. $f_{esc,0}$ UV escape fraction normalisation
- 8. α_{esc} UV escape fraction power law dependence on redshift

Constraints using Fisher Matrix

Pober+, **ApJ**, 782, (2014)

Error/noise on your data points

Constraints using Fisher Matrix

 $\partial \Delta^2(k,z) \ \partial \Delta^2(k,z)$ $\partial \theta_i$ $\partial heta_i$ Derivative of your observations

w.r.t parameters

Pober+, **ApJ**, 782, (2014)

Error/noise on your data points

The Covariance matrix is the inverse of \mathbf{F}_{ii}

*** conditions apply: Gaussian likelihood.

Constraints using Fisher Matrix

 $\sum_{\substack{k,z}} \frac{1}{\varepsilon^2(k,z)} \frac{\partial \Delta^2(k,z)}{\partial \theta_i} \frac{\partial \Delta^2(k,z)}{\partial \theta_j}$ Derivative of your observations w.r.t parameters

Pober+, **ApJ**, 782, (2014)

SKA1-low sensitivity

ASTRO 3D

Fisher matrix constraints with 21-cm PS

E UNIVERSITY C MELBOURNE

ASTRO 3D

Fisher matrix constraints with 21-cm PS

- A lot of correlations between the model parameters
- UV escape fraction and supernova feedback

ASTRO 3D

Fisher matrix constraints with 21-cm PS

- Tight constraints on the X-ray properties.
- Moderate constraints on the UV escape fraction and star formation efficiencies.
- Only weak constraints on Supernovae feedback properties.

Fisher matrix constraints with 21-cm PS

- Tight constraints on the X-ray properties.
- Moderate constraints on the UV escape fraction and star formation efficiencies.
- Only weak constraints on Supernovae feedback properties.
- To improve constraints, we add in the UV LFs $z \in [5, 10]$
- Vastly improves e constraints on star formation and supernova feedback.

Fisher matrix constraints with 21-cm PS

Fisher matrix constraints with 21-cm PS & UV LFs

- X-ray properties of the galaxies in the early Universe tightly constrained by 21-cm PS.
- Synergy between different high-z observations.
 - Adding in the UV LFs improve constraints (star formation and supernova feedback).
- 10% constraints on most of the parameters.

 10^{-3}

Balu, Greig & Wyithe; arXiv:2305.05104 Balu+, MNRAS, 520, 3368-3382 (2023)

